A nuclear clock with ^{229}Th

Benedict Seiferle

LMU Munich

Thorium Energy Conference 2018

Brussels
Outline

1. Motivation

2. Experiments towards a nuclear clock

3. Conclusion
Outline

1. Motivation

2. Experiments towards a nuclear clock

3. Conclusion
How to build a Clock

- recurring event
 → oscillations of a pendulum
- counter
How to build a Clock

- recurring event
 - oscillations of a pendulum
- counter
How to build a Clock

- recurring event
 → oscillations of a pendulum
- counter
How to build a good Clock

Pendulum clock problems:
- frequency depends on
 - length
 - gravitational field
How to build a **good** Clock

Pendulum clock problems:
- frequency depends on
 - length
 - gravitational field
How to build a **good** Clock

- reproducible
- universal
- accurate & precise
How to build a **good** Clock

- reproducible
- universal
- accurate & precise

Optical Atomic Clock:
- drive an atomic transition with a laser
- measure its frequency
Optical Atomic Clocks

- **best atomic clocks:** Strontium lattice clock at NIST
 - frequency uncertainty [1]: 2.1×10^{-18}
 - distance earth-moon: 1 nm

Optical Atomic Clocks

- **best atomic clocks**: Strontium lattice clock at NIST
 - frequency uncertainty [1]: 2.1×10^{-18}
 - distance earth-moon: 1 nm
 - precision is only limited by external electric and magnetic fields

Can one do better? - A nuclear optical clock

Idea: Use nuclear transition for time measurement [2]
- expected frequency uncertainty: \(1.5 \times 10^{-19}\) [3]

Expected advantages:
- nucleus is 5 orders of magnitudes smaller than the atom
 \(\rightarrow\) highly resistant to external influences
- solid state clock feasible? [4]
 \(\rightarrow\) \(10^{19}\) nuclei in crystal lattice vs. \(10^4 - 10^6\) in an optical lattice

Potential applications of a nuclear optical clock

- satellite navigation
- geodesy
 \[\text{relative frequency shifts are proportional to gravitational potential differences} \]
- clock networks for dark matter search
- are fundamental constants really constant?
 \[\dot{\alpha} \propto \Delta V_C \]
 \[\text{differences in the coulomb potential can be huge in nuclei} \]
Requirements for a nuclear clock transition

- laser access
 - transition energy in the eV range
- small linewidth
 - lifetime in the range of at least some seconds
229Th - What is known so far

- lowest excitation energy of all known nuclear states
 \[E_I = 7.8 \pm 0.5 \text{ eV} \ (\approx 159 \text{ nm}) \] [5]

Motivation

229Th - What is known so far

- lowest excitation energy of all known nuclear states
 \[E_I = 7.8 \pm 0.5 \text{ eV} \ (\approx 159 \text{ nm}) \] [5]

\[\begin{array}{c}
\text{229mTh} \\
\uparrow \Delta E = 7.8 \pm 0.5 \text{ eV} \\
\text{M1 transition} \\
\downarrow \\
\text{229gTh}
\end{array} \]

\[\begin{array}{c}
\text{3/2}^+ \\
\text{[631]} \\
\text{5/2}^+ \\
\text{[633]}
\end{array} \]

\gamma-decay

- \(\tau \approx 10^4 \text{ s} \)
 \[\Delta E/E \approx 10^{-20} \]

internal conversion decay

- \(\tau \approx 10 \mu\text{s} \) [6]
 - only possible in neutral 229mTh
 \[\rightarrow 1\text{st IP} < E_I < 2\text{nd IP} \]

Why don’t you simply build a nuclear clock?

- direct nuclear laser excitation has not been achieved so far
- transition energy is not known precisely

Experimental Objectives:

- determine the lifetime
 - internal conversion ✓
 - γ-decay
- improved energy measurement
Outline

1. Motivation

2. Experiments towards a nuclear clock

3. Conclusion
Experiments towards a nuclear clock

Indirect Measurements

\[{\text{233U}} \rightarrow {\text{229Th}} \rightarrow {\text{229mTh}} \]
Experiments towards a nuclear clock

Indirect Measurements

Direct Measurements

233\text{U} \xrightarrow{\alpha} 229\text{Th} \xrightarrow{} 229_{\text{m}}\text{Th}

233\text{U} \xrightarrow{\alpha} 229\text{Th} \xrightarrow{2\%} 229_{\text{m}}\text{Th}

233\text{U} \xrightarrow{\alpha} 229\text{Th} \xrightarrow{98\%} 229\text{Th}
Experiments towards a nuclear clock

Indirect Measurements

\[^{233}\text{U} \rightarrow ^{229}\text{Th} \rightarrow ^{229m}\text{Th} \]

Direct Measurements

\[^{233}\text{U} \rightarrow ^{229}\text{Th} \rightarrow ^{229m}\text{Th}, 2\% \]

\[^{229}\text{Th} \rightarrow ^{229m}\text{Th}, 98\% \]

Direct Excitation

\[^{229}\text{Th} \rightarrow ^{229m}\text{Th} \]
Indirect Measurements

- γ spectrum following the α-decay of 233U
 - first evidence already in 1976
- compare lines that populate the isomer with lines populating the ground-state
 - currently best energy value

Indirect Measurements

- γ spectrum following the α-decay of ^{233}U
 - first evidence already in 1976
- compare lines that populate the isomer with lines populating the ground-state
 - currently best energy value

Direct Measurements

- populate $^{229\text{m}}\text{Th}$ via the 2\% decay branch of the ^{233}U α-decay
Direct Measurements

- populate 229mTh via the 2% decay branch of the 233U α-decay
- create a pure 229mTh ion beam
Direct Measurements

- populate 229mTh via the 2% decay branch of the 233U α-decay
- create a pure 229mTh ion beam
- neutralize the 229mTh ions
Direct Measurements

- populate ^{229m}Th via the 2% decay branch of the ^{233}U α-decay
- create a pure ^{229m}Th ion beam
- neutralize the ^{229m}Th ions
- detect the electron emitted during the internal conversion decay
Direct Measurements

- exploit the long lifetime of the isomer in ^{229}Th ions
- trigger internal conversion by neutralization
 - first direct detection [7]
 - first lifetime measurement [6]
 - energy determination via IC electrons

Direct Measurements

- exploit the long lifetime of the isomer in 229Th ions
- trigger internal conversion by neutralization
 - first direct detection [7]
 - first lifetime measurement [6]
 - energy determination via IC electrons

Direct Measurements

- exploit the long lifetime of the isomer in 229Th ions
- trigger internal conversion by neutralization
 - first direct detection [7]
 - first lifetime measurement [6]
 - energy determination via IC electrons

Direct Excitation

- 229Th surface + tunable pulsed laser [8]
- use internal conversion electrons as a signature
 - first nuclear laser excitation
 - giant step towards a nuclear clock
 - work is ongoing

Direct Excitation

- ^{229}Th surface + tunable pulsed laser [8]
- use internal conversion electrons as a signature
 - first nuclear laser excitation
 - giant step towards a nuclear clock
 - work is ongoing

Outline

1. Motivation

2. Experiments towards a nuclear clock

3. Conclusion
Conclusion

- 229Th
 - lowest excited state of all known nuclear levels
 - laser excitation feasible
 - nuclear optical clock feasible

- experimental efforts are ongoing
 - precise energy measurement needed

- nuclear clock
 - complementary technology
 - (probably) highly sensitive to temporal variation of fundamental constants
Thank you for your attention!

Benedict Seiferle1, Lars von der Wense1, Ines Amersdorffer1, Mustapha Laatiaoui2,3, Jürgen B. Neumayr1, Hans-Jörg Maier1, Hans-Friedrich Wirth1, Christoph Mokry3,4, Jörg Runke2,4, Klaus Eberhardt3,4, Christoph E. Düllmann2,3,4, Norbert G. Trautmann4 & Peter G. Thirolf1

1 Ludwig-Maximilians-Universität München, 2 GSI Helmholtzzentrum für Schwerionenforschung GmbH, 3 Helmholtz-Institut Mainz 4 Johannes Gutenberg-Universität Mainz.