A paradigm shift in nuclear reactor safety with the Molten Salt Reactor

19-10-2015

Coordinated by Jan Leen Kloosterman, TU–Delft
Presented by Jiri Krepel, PSI
SAMOFAR: Partners

<table>
<thead>
<tr>
<th>Number</th>
<th>Organisation</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Technische Universiteit Delft (TU Delft)</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>2</td>
<td>Centre National de la Recherche Scientifique (CNRS)</td>
<td>France</td>
</tr>
<tr>
<td>3</td>
<td>JRC – Joint Research Centre– European Commission (JRC)</td>
<td>Germany</td>
</tr>
<tr>
<td>4</td>
<td>Consorzio Interuniversitario Nazionale per la Ricerca Tecnologica Nucleare (CIR TEN)</td>
<td>Italy</td>
</tr>
<tr>
<td>5</td>
<td>Institut de Radioprotection et de Sûreté Nucléaire (IRSN)</td>
<td>France</td>
</tr>
<tr>
<td>6</td>
<td>Centro de Investigaciony de Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV)</td>
<td>Mexico</td>
</tr>
<tr>
<td>7</td>
<td>AREVA NP SAS (AREVA)</td>
<td>France</td>
</tr>
<tr>
<td>8</td>
<td>Commissariat a l’Energie Atomique et aux Energies Alternatives (CEA)</td>
<td>France</td>
</tr>
<tr>
<td>9</td>
<td>Electricité de France S.A. (EDF)</td>
<td>France</td>
</tr>
<tr>
<td>10</td>
<td>Paul Scherrer Institute (PSI)</td>
<td>Switzerland</td>
</tr>
<tr>
<td>11</td>
<td>Karlsruher Institut für Technologie (KIT)</td>
<td>Germany</td>
</tr>
</tbody>
</table>
Aim of the project

- The grand objective of SAMOFAR is to:
 - prove the innovative safety concepts of the MSFR,
 - deliver breakthrough in nuclear safety and waste management
 - create a consortium of stakeholders to demonstrate the MSFR beyond SAMOFAR

- Main results are:
 - experimental proof of concept
 - safety assessment of the MSFR
 - update of the conceptual design of the MSFR
 - roadmap and momentum among stakeholders
SAMOFAR Project management

- **Project Coordinator:** Coordination of the progress
 Who: Jan Leen Kloosterman *(J.L.Kloosterman@tudelft.nl)*

- **Project manager:** Project management aspects of the project
 Who: Karin van der Graaf *(SAMOFAR@tudelft.nl)*

- **Legal and Financial support:**
 Who: Rogier van Loghem *(legal officer, R.W.vanLoghem@tudelft.nl)*,
 Ada Ruiterman *(financial officer, A.M.A.E.Ruiterman@tudelft.nl)*

- **Governing Council:** Decision-making body
 Who: One representative from each partner
 Chaired by Project Coordinator, assisted by Project Manager

- **Project Management Board:** responsible for WP progress & reporting
 Who: Jan Leen + WP leaders
 Chaired by Project Coordinator, assisted by Project Manager
Project Management Board

Work package leaders:

WP1 Elsa Merle-Lucotte (CNRS)
WP2 Ondrej Benes (JRC)
WP3 Marco Ricotti (CIRTEN)
WP4 Danny Lathouwers (TU Delft)
WP5 Sylvie Delpech (CNRS)
WP6 Jan Leen Kloosterman (TU Delft)
WP7 Karin van der Graaf (TU Delft)
Non–EU Projects

- Shanghai Institute of Applied Physics (SINAP). Executing a large project in the field of FHR and MSR (2nd stage)
- Kurchatov Institute applying for a research grant on SMART–MSFR
- University of New Mexico executing a large project on FHR together with MIT/UCB/Wisconsin
SAMOFAR
WP1: Integral safety assessment

- Development of a power plant simulator
- Dynamic behaviour of MSFR including startup, shut-down, control, load-follow operation
- Development of an integral safety assessment methodology
- Risk assessment based on integral safety method
- Proliferation aspects
- ...
WP1: Reference design

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal power</td>
<td>3000 MWth</td>
</tr>
<tr>
<td>Mean fuel salt temperature</td>
<td>700 °C (to be fixed)</td>
</tr>
<tr>
<td>Fuel salt temperature rise in the core</td>
<td>100 °C (to be fixed)</td>
</tr>
<tr>
<td>Fuel molten salt - Initial composition</td>
<td>LiF-ThF₄-UF₄-(TRU)F₃ with (77.7-6.7-12.3-3.3 mol%) and U enriched at 13%</td>
</tr>
<tr>
<td>Fuel salt melting point</td>
<td>565 °C</td>
</tr>
<tr>
<td>Fuel salt density</td>
<td>4.1 g/cm³</td>
</tr>
<tr>
<td>Fuel salt dilation coefficient</td>
<td>8.82 x 10⁻⁴ / °C</td>
</tr>
<tr>
<td>Fertile blanket salt - Initial composition</td>
<td>LiF-ThF₄ (77.5%-22.5%)</td>
</tr>
<tr>
<td>Breeding ratio (steady-state)</td>
<td>1.1</td>
</tr>
<tr>
<td>Total feedback coefficient</td>
<td>-5 to -8 pcm/K</td>
</tr>
<tr>
<td>Core dimensions</td>
<td>Diameter: 2.26 m</td>
</tr>
<tr>
<td></td>
<td>Height: 2.26 m</td>
</tr>
<tr>
<td>Fuel salt volume</td>
<td>18 m³ (¼ in the core + ¼ in the external circuits)</td>
</tr>
<tr>
<td>Blanket salt volume</td>
<td>7.3 m³</td>
</tr>
<tr>
<td>Total fuel salt cycle</td>
<td>3.9 s</td>
</tr>
</tbody>
</table>
WP1: Reference design

3 circuits:
- Fuel circuit
- Intermediate circuit
- Energy conversion system
+ Draining tanks

Fuel circuit = core + 16 external recirculation loops:
- Pipes (cold and hot region)
- Bubble Separator
- Pump
- Heat Exchanger
- Bubble Injection
SAMOFAR
WP2: Safety related data

- Synthesis salts containing PuF3 and UF4
- Measurement of phase diagrams of fuel salts
- Development of experimental techniques and measurement of thermal properties of fuel salts
- Examining precipitates upon super-cooling
- Examining FP release upon super-heating (up to vaporization)
- Interaction of fuel salt with water under irradiation
- Measurement of retention properties Iodine and Cesium
- ...
SAMOFAR
WP2: Safety related data example

Retention properties of elements in the fuel salt

JRC–ITU:
- Knudsen Effusion Mass Spectrometry of the simfuel samples containing Cs and I in their likely chemical form:
 - CsI dissolved in Flinak
 - CsI dissolved in the LiF–ThF4 eutectic
 - CsF dissolved in the LiF–ThF4 eutectic
- Comparison to irradiated oxide fuel will be made
- Identification of the frozen phase (extra)

CNRS (Toulouse):
- Te chemistry vs. redox potential (most likely in the LiF–CaF2 solvent)
SAMOFAR
WP3: Experimental validation

- Natural circulation dynamics of fuel salts with internal heating
- Measurement of natural circulation stability maps
- Physical condition of fuel salt during draining
- Freeze plug design and salt draining dynamics
- Measurement of solidification phenomena along walls
- …
SAMOFAR

WP4: Numerical assessment

- Multi-physics simulation tools based on leading edge neutron transport and CFD methods including uncertainty propagation
- Transient analysis as identified in WP1 (normal operation and off-normal operation)
- Decay heat removal via natural circulation
- Thermal expansion reactor vessel
- Salt draining simulations
- …
SAMOFAR
WP5: Chemical processing

- Safety assessment reprocessing facility
- Interaction chemical plant and nuclear reactor
- Proof of reductive extraction processes
- Evaluation of radioactive and chemical toxic gas streams
- Evaluation of solid and fluid product streams
- Shielding evaluation, hold-up tanks sizing, etc.
- Evaluation of liners to the reactor vessel
- ...

15
THE REPROCESSING SCHEME

Helium bubbling
Xe, Kr (+ brothers)
Noble metals

Step 1
Fluorination
(Extraction U, Np, l, Tc, Te, Nb, Mo, Se,...)

Step 2.A
Reductive extraction An
(Bi-Li₁)

Step 2.B
Reductive extraction Ln
(Bi-Li₂)

Step 2.C
Back extraction An
in LiF-ThF₄

Step 3
Back extraction Ln
in LiCl-LiF
and precipitation Ln₂O₃

Step 5
Redox potentiel
control and U amount

Reductive extraction: \(x\text{Li}_{Bi} + MF_x \rightarrow x\text{LiF} + M_{Bi} \)
SAMOFAR
WP6: Dissemination/exploitation

- Education and training of students
- Exchange of students
- Compilation of strategic stakeholders
- School for students
- Workshop for stakeholders
- …