Accelerators for ADSRs

Roger Barlow

Huddersfield University

ITHEC 2013
Thorium fuelled ADSR systems require high power proton beams, beyond the capacity of existing machines.

- Review of the requirements for energy, current, and reliability
- Comparison with the performance of current and proposed Linacs
- The proposed DAEδALUS MultiMegawatt Cyclotron
- The proposed nsFFAG
Beam requirements

Probably largely covered by previous speakers

Protons obvious beam particle. Electrons easier but much less effective. No compelling advantage for ions

Neutron-per-proton-energy plateaus at 1 GeV, making it obvious choice.

For mid-range power plant (1 GW thermal) and \(\beta = 0.98 \) (safe and sensible?) need 10 mA of 1 GeV protons – 10 MW.

\[
\frac{0.010}{e} \times \frac{30}{2.5} \times \frac{1}{1 - 0.98} \times 200 \times 10^6 \times e = 1.2 \times 10^9 \text{Watts}
\]
Why only .98?
- slide added at the last minute

The protactinium problem
During running of a Thorium ADSR, Thorium is converted into Uranium via Protactinium

\[^{232}\text{Th} \to ^{233}\text{Pa} \to ^{233}\text{U} \to \text{Fission products} \]

and a dynamic equilibrium is reached for Pa and U.
If the accelerator is switched off, the first and third steps stop. But the second continues (mean life 27 days). So the concentration of \(^{233}\text{U}\) increases after operation stops.
This increases the criticality, \(\beta\), over a period of weeks.
The amount depends on the design – analyses I’ve seen give a boost around 1%.
So \(\beta \geq 0.99\) are not ’deterministically’ safe.
Comparison with existing/planned machines
We’re not there yet

<table>
<thead>
<tr>
<th>Machine</th>
<th>Energy GeV</th>
<th>Current mA</th>
<th>Power MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI</td>
<td>0.59</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>ESS</td>
<td>2.0</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>CSNS-II</td>
<td>1.6</td>
<td>0.125</td>
<td>0.2</td>
</tr>
<tr>
<td>SNS</td>
<td>1</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>MYRRHA</td>
<td>0.6</td>
<td>3.5</td>
<td>2.1</td>
</tr>
<tr>
<td>ISIS</td>
<td>0.8</td>
<td>0.2</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Some spallation sources below 1 GeV due to cost
Some spallation sources above 1 GeV due to space charge problems(?)
Reliability and a commercial power station

Limit of 3 trips/year often quoted but too demanding (See DOE white paper). But reliability needs to be much better than currently achieved.

- Simple design
- Careful analysis
- Redundancy
- Under-rating
- Graceful failure
- Planned maintenance

Hostile environment - need shutdown for maintenance. But long downtimes not acceptable, even when scheduled. Ideal - run with 3 accelerators. One under maintenance, two operating, but if one drops out the other can manage.

Huge cost of 3 linacs – consider cyclic accelerators.
A neutrino oscillation experiment using 3 ν_μ sources and one ν_e detector 800 MeV proton accelerators (each 20% duty cycle) at distances of 1.5, 8 and 20 km, with powers of 1.0, 1.6 and 4.8 MW.

Propose the multi-megawatt DAEδALUS Superconducting Ring Cyclotron (DSRC): 800 MeV protons. Accelerate H_2^+ ions with stripping extraction.

Design very applicable for ADSRs.
Cyclotron accelerating H_2^+ ions to 1.6 GeV, giving 4 mA of 800 MeV protons. Extraction done by stripping.
(Path shown)
Injection cyclotron up to 60 MeV/amu, clean extraction with two electrostatic deflectors,
The choice of particle: H_2^+

Stripping extraction needed for main cyclotron as orbits are very close.

Binding energy $2.75\text{eV} \gg 0.75\text{eV}$ for H^-, so much more stable and easier to handle.

Other Advantages

Also reduces effects of space charge (very important). Simulations show that the injector cyclotron is space charge dominated, but 5 mA achievable.

Space charge effects can be quantified using the generalised perveance, $K = \frac{qI}{2\pi\varepsilon_0 m\gamma^3\beta^3}$ so effect for H_2^+ is halved.

Disadvantages

Needs better vacuum: 10^{-8} rather than 10^{-7} torr.

Needs high field strength, hence superconducting magnet.
Source and injector

The Source
Require 50 mA of H_2^+. Versatile Ion Source (VIS), designed and built at INFN-LNS (Catania) achieves several mA. Other possibilities under study. Experimental tests with the source, and the matching of the beams from it, currently under way at BEST cyclotrons, in Vancouver.

The Injector
The DAEδALUS Injector Cyclotron (DIC) will accelerate 5 mA of H_2^+ ions up to 60 MeV/amu. 4 sectors, diameter 6.2 m, 2.7 m high. Field (conventional magnet) increases from 1.075 to 1.16 T. Injection with spiral inflector. Four 49.2 MHz double-gap RF cavities accelerate the bunches in 107 turns. Bunches extracted conventionally, as separation 2 cm. Isochronism better than 5×10^{-4}. Injection energy 70 keV (35 keV/amu), gives the same generalised perveance as commercial cyclotrons.
The main cyclotron
The DAEδALUS Superconducting Ring Cyclotron (DSRC)

Six superconducting sector magnets are used, with current densities of 3400A/cm². (Earlier design had 8, didn’t leave enough room for RF)

Four single-gap copper cavities, 3m high and 8.8m long. 49.2 MHz (6th harmonic), Q= 37,500. Gives acceleration from 2.0 to 4.0 MV per turn. Similar to those of the PSI cyclotron, hence credible. May be possible to add two double-gap cavities.

Extraction by thin (2mg/cm²) pyrolytic graphite foil, a few cm² in size. Stripping of H₂⁺ needs study but should be OK. Electrons stop on copper shield. . Hope for pulse width < 1ms to ensure foil temperature < 2500K. Based on SNS, anticipate foil lifetimes of several months.
The magnets

Cryostat made of iron and stainless steel. Enormous forces analysed with OPERA: stainless steel plates connect opposite segments. Design similar to the existing RIKEN SRC, hence the parameters in general credible.

8-sector magnet solution problematic. Developed 6-sector alternative. 34 A/mm^2, Constant cross-section $31 \times 16 \text{cm}^2$. Space for 4 RF cavities and injection+extraction.

Preliminary engineering study done. Modelling for the conductor, high temperature superconductor and copper current leads for the magnet, structural design of magnet cold mass, cryostat and warm-to-cold supports, cryogenic design of the magnet cooling system, and magnet power supply.
Lattice properties

Isochronicity 0.05% is adequate, focussing sufficient in both planes. Walkinshaw resonance is crossed rapidly, and should not lead to beam losses (more studies needed).
Simulations with space charge now being done (using OPAL) for 6 sector model. Surprises not expected as 8 sector model behaved well.

Injector on its own could provide interesting neutrino source (IsoDAR). Possibilities being strongly pursued. Would provide valuable experience of high currents and low (60 MeV) energies.

This could be another instance where the demands of particle physics push technology forward - blazing the trail for the benefit of the applications who follow.
The FFAG

Fixed Field Alternating Gradient Accelerator

Bending field increases with R
Looks to us like a cyclotron but particles see it as a synchrotron.
Gradient gives focussing
Counterbends with opposite gradient

Invented and abandoned in the 1950’s. Not the way to the energy frontier.

Revived in the 1990’s. Gives cyclotron currents with synchrotron focussing and fast acceleration.
The nsFFAG

Conventional (scaling) FFAG has slow $B(R) \propto R^k$

Optics does not change during acceleration

Hence tune does not change

Hence resonances can be avoided

Why avoid resonances?
If acceleration is fast, they don’t hurt
Build EMMA to test the idea
EMMA: The Electron Machine with Many Applications
formerly The Electron Machine for a Muon Accelerator

10 - 18MeV electron accelerator
84 quadrupole magnets.
Built at Daresbury Laboratory, UK
Success! Store and accelerate electrons
An nsFFAG for ADSR

Very important disclaimer

Field map produced by Carol Johnstone, who gets any credit going. Rudimentary tracking and analysis by me, to whom any blame is due.

6 bending magnets, 12 small counterbends. 10 m diameter.
Acceptance

Very generous, especially at low and high energies. Plot shows orbits spread about reference by 10 cm and 50 mrad.
Period and tune

Period is fairly constant with energy. Not strictly isochronous but enough to enable serpentine acceleration.

Tune is also fairly flat - which is a bonus.

Outlook
Looks promising but needs a little more optimisation and a lot more study.
Cyclic accelerators (Cyclotrons or FFAGs) are possible solutions to the ADSR requirements.

Cheaper than Linacs, and multiple-accelerator systems may be affordable

Several designs are progressing from different groups...

Stay tuned!