Chemical Analysis of Molten Salts Before and During Use in a Test Loop by Flame Atomic Absorption Spectroscopy

Kim Pamplin, Lezlei Haag, Emily Mikeska, Henry Touchton
NEXT Collaboration
NEXT Collaboration

• 10 full-time faculty/staff + 20 undergraduate students
NEXT Collaboration

- 10 full-time faculty/staff + 20 undergraduate students
- Several departments
NEXT Collaboration

• 10 full-time faculty/staff + 20 undergraduate students
• Several departments
• $4.5M funding
 • Local and federal
 • Private and public
NEXT Collaboration

• 10 full-time faculty/staff + 20 undergraduate students
• Several departments
• $4.5M funding
 • Local and federal
 • Private and public

• Goal: Build non-nuclear test and research MS system
 • Use to evaluate and demonstrate emerging technologies
Gen IV Technology Roadmap

- MSR R&D should address
 - Corrosion
 - Molten salt chemistry control
 - REDOX control
 - Liquid-liquid extraction
 - Salt purification

US DOE Nuclear Energy Research Advisory Committee, Generation IV International Forum,
A technology roadmap for generation IV nuclear energy systems; December 2002; pp 34-35.
GIF Technology Roadmap

• MSR R&D should address
 • Corrosion
 • Molten salt chemistry control
 • REDOX control
 • Liquid-liquid extraction
 • Salt purification

• Needed: Direct chemical analysis of flowing molten salt
NEXT Collaboration

• Goal: Build non-nuclear test and research MS system
 • Use to evaluate and demonstrate emerging technologies
 • Direct chemical analysis of flowing molten salt
Current System: Molten Salt Test Loop

• Purpose: Gain experience with molten salt in a pumped flowing loop
Current System: Molten Salt Test Loop

• Purpose: Gain experience with molten salt in a pumped flowing loop

• Salt: Dynalene MS-2
 • LiNO$_3$ – NaNO$_3$ – KNO$_3$
 • 130°C – 500°C
 • Good corrosion performance for SS316
Current System: Molten Salt Test Loop

- **Purpose:** Gain experience with molten salt in a pumped flowing loop
- **Salt:** Dynalene MS-2
 - LiNO_3 – NaNO_3 – KNO_3
 - $130^\circ\text{C} – 500^\circ\text{C}$
 - Good corrosion performance for SS316
- **System Capacity:** 19 L
- **Mass of salt loaded:** 35 kg
- **Operating salt temp:** $<200^\circ\text{C}$
Current System: Molten Salt Test Loop

• Purpose: Gain experience with molten salt in a pumped flowing loop

• Salt: Dynalene MS-2
 • LiNO$_3$ – NaNO$_3$ – KNO$_3$
 • 130°C – 500°C
 • Good corrosion performance for SS316

• System Capacity: 25 L

• Mass of salt loaded: 35 kg

• Operating salt temp: <200°C
Sampling the Flowing Salt

• Sampling methods
 • SS316 dip cup on rod
Sampling the Flowing Salt

- Sampling methods
 - SS316 dip cup on rod
 - SS316 threaded rod
Sampling the Flowing Salt

• Sampling methods
 • SS316 dip cup on rod
 • SS316 threaded rod
 • Dispensing valve and tube mounted on test loop
Sampling the Flowing Salt

- Sampling methods
 - SS316 dip cup on rod
 - SS316 threaded rod
 - Dispensing valve and tube mounted on test loop
Sampling the Flowing Salt

• Sampling methods
 • SS316 dip cup on rod
 • SS316 threaded rod
 • Dispensing valve and tube mounted on test loop

• Disadvantages
 • Exposure to atmosphere
 • Contamination from container
 • No instantaneous results
Flame Atomic Absorption Spectrometer

- Equipped to measure Fe, Cr, Mn, Ni
- Sub-ppm detection limits
- Must have lamp for each element
Calibration Curves for AAS

• Graph that shows calibration curves for four metals in solutions
Calibration Curves in Nitrate Salt Mixture

- Graph with four metals calibration
Determine metals in Dynalene MS-2

Metal concentrations in Dynalene MS-2 after introduction to MSTL

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration before pumping (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>71.9</td>
</tr>
<tr>
<td>Nickel</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Determine metals in Dynalene MS-2

Metal concentrations in flowing Dynalene MS-2 in MSTL

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration before pumping (ppm)</th>
<th>Concentration while pumping (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>71.9</td>
<td>97.6</td>
</tr>
<tr>
<td>Nickel</td>
<td>2.1</td>
<td>10</td>
</tr>
</tbody>
</table>
Future Chemical Analysis Work

• Sampling from loop without exposure to atmosphere
• Direct measurement on flowing loop
 • Cyclic voltammetry
• Explore analytical methods applicable to more elements
 • Laser Induced Breakdown Spectroscopy
 • Mass Spectrometry
Physical Chemistry Group

• Dr. Aaron Robison, Dakota Martinez, Ron Laehn, Ashley Archambeau
• Characterization and purification of salts
• Differential Scanning Calorimetry (DSC)
DSC of Dynalene MS-2
(LiNO$_3$ – NaNO$_3$ – KNO$_3$)

Melting Point: 129°C (115-145°C)
Use of DSC to Study Salt Mixture Properties
Conclusions

• Achieved crude sampling and analysis of pumped flowing salt
• Need vast improvements in sampling
• Need better analytical methods for more elements
• Continue search for direct analysis of flowing molten salt
Acknowledgements

• Robison Excelsior Foundation
• Leggett Foundation
• Kickapoo Springs Foundation
• Robert A. Welch Foundation
• Development Corporation of Abilene