Indian Monazite – A Potential Source For Future Thorium Energy

Thorium Energy Conference, 2018

D SINGH
CHAIRMAN AND MANAGING DIRECTOR
INDIAN RARE EARTHS LIMITED, MUMBAI
The statements in this presentation represent the considered views of the Indian Rare Earths Ltd (IREL). It includes certain statements that may be deemed "forward-looking statements." All statements in this presentation, other than statements of historical facts, government actions and events, are forward-looking statements. Although IREL believes the outcomes expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results or developments may differ materially from those in forward-looking statements. Factors that could cause actual results to differ materially from those in forward-looking statements include but not limited to new rare earth applications, the development of economic rare earth substitutes and general economic, market or business conditions.

While, IREL has made every reasonable effort to ensure the veracity of the information presented IREL cannot expressly guarantee the accuracy and reliability of the estimates and conclusions contained herein. Accordingly, the statements in the presentation should be used for general guidance only.
Thorium – A Potential Nuclear Fuel

- Useful substance for nuclear energy generation.
- Reserves are widely distributed in nature.
- Excellent chemical and metallographic stability demonstrated by its neutron damage resistance.
- Advantage over Uranium as fuel due to low radio toxicity, increased safety features and higher flexibility for breeding.
- Major hope as an alternate to fossil fuel due to its abundance, consistent nature of production and low emission of carbon dioxide.
- Integral part of India’s three stage nuclear program.
Thorium Energy-The Need Of The Hour For India

- India’s energy demand expected to increase two fold by 2030.

- Thorium trending to be a key player in the energy arena.

- India is working relentlessly to generate energy - major source from nuclear & thermal energy.

- India has taken keen interest in nuclear energy technologies due to increase in population, decline of fossil fuel resources and increasing pollution.
India’s Three Stage Nuclear Program

- **First stage**: Natural Uranium in pressurized heavy water reactor

- **Second stage**: Burning of plutonium with a Uranium and Thorium blanket.

- **Third stage**: Thorium would be the starting material.

Indian Monazite – A Potential For Future Thorium Energy
Thorium – Reserves

- India has one of the world’s largest thorium deposits - Monazite.

- Thorium reserves make up to 25% of global reserves.

- India has about 1.12 million tons of Thorium Oxide (ThO2).

- Indian Thorium reserves could possibly be converted to 358,000 GW-yr of electrical energy to meet the future energy requirement.
Sources of Thorium

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Mineral</th>
<th>Natural Form</th>
<th>ThO₂ content</th>
<th>Crystal shape</th>
<th>Colour</th>
<th>Lustre</th>
<th>Streak</th>
<th>Hardness (Mohs Scale)</th>
<th>Density (#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monazite</td>
<td>(Ce, La, Th)PO₄</td>
<td>1-15%</td>
<td>As prismatic crystals or angular fragments or as rounded small glassy grains</td>
<td>Pink to brown</td>
<td>Resinous</td>
<td>Colourless to pale brown or yellowish</td>
<td>5 – 5.5</td>
<td>4.6 – 5.3</td>
</tr>
<tr>
<td>2</td>
<td>Thorianite</td>
<td>ThO₂</td>
<td>90%</td>
<td>Small cubes which become worn on edges when subjected to erosion</td>
<td>Black to brownish or greyish</td>
<td>Sub metallic to greasy</td>
<td>Black</td>
<td>5 – 7</td>
<td>9 or above</td>
</tr>
<tr>
<td>3</td>
<td>Thorite</td>
<td>ThSiO₄</td>
<td>80%</td>
<td>Small, square, prismatic crystals with pyramid like points similar to zircon</td>
<td>Black, greenish black or brown</td>
<td>Glassy or greasy</td>
<td>Brown to orange</td>
<td>4.5 – 5</td>
<td>4 - 6</td>
</tr>
</tbody>
</table>

Higher the percentage of thorium, higher the density
Monazite – Reserves in India

- India has ~6000 Km long coastline rich in Atomic Mineral deposits.

- Monazite content vary from Nil to 5%.

State wise resources of Monazite available in costal tracts of India
Monazite – Mineral and Chemical Composition

Typical mineral composition of monazite

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monazite</td>
<td>96.0</td>
</tr>
<tr>
<td>Zircon</td>
<td>1.4</td>
</tr>
<tr>
<td>Ilmenite</td>
<td>0.6</td>
</tr>
<tr>
<td>Garnet</td>
<td>1.1</td>
</tr>
<tr>
<td>Quartz</td>
<td>0.5</td>
</tr>
<tr>
<td>Sillimanite</td>
<td>0.2</td>
</tr>
<tr>
<td>Others</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Monazite is weakly magnetic and non-conducting

Chemical Composition

<table>
<thead>
<tr>
<th>Constituent</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monazite content</td>
<td>96</td>
</tr>
<tr>
<td>TOTAL Rare earths oxide</td>
<td>59.2</td>
</tr>
<tr>
<td>La2O3</td>
<td>12.8</td>
</tr>
<tr>
<td>CeO2</td>
<td>27.5</td>
</tr>
<tr>
<td>Pr6O11</td>
<td>3.1</td>
</tr>
<tr>
<td>Nd2O3</td>
<td>10.8</td>
</tr>
<tr>
<td>Sm2O3</td>
<td>2.1</td>
</tr>
<tr>
<td>Gd2O3</td>
<td>0.71</td>
</tr>
<tr>
<td>Y2O3</td>
<td>0.42</td>
</tr>
<tr>
<td>Eu2O3</td>
<td>0.06</td>
</tr>
<tr>
<td>ThO2</td>
<td>8.9</td>
</tr>
<tr>
<td>PbO</td>
<td>0.18</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.28</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.4</td>
</tr>
<tr>
<td>SiO2</td>
<td>1.1</td>
</tr>
<tr>
<td>P2O5</td>
<td>27.4</td>
</tr>
<tr>
<td>CaO</td>
<td>1.14</td>
</tr>
<tr>
<td>MgO</td>
<td>0.61</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.2</td>
</tr>
<tr>
<td>ZrO2</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Typical Flow Sheet

Mining by dredging or scarping

Screening

Sized ore added

Sized ore slurry

Multi stages spiral separation

Gravity separation

Washing

dewatering

drying

Non-magnetics

Magnetic separation

Electrostatic separation

Non-conductors

Non-conductive
Conductive

Monazite concentrate

High Induced Magnetic Separator

Rutile

Ilmenite

Zircon

Magnetic

Non-magnetics

Non-magnetic

Rare Earth Roll Magnetic Separator

Indian Monazite – A Potential For Future Thorium Energy
Flow Sheet For Pre-concentration

Beach sand placer
- Heavy Mineral (15-20%)
 - Ilmenite 7-9%
 - Rutile 04-0.45%
 - Zircon 0.3-0.4%
 - Monazite 0.1-0.2%
 - Sillimanite 2.5-3.5%
 - Garnet 5-7%

Dredge & wet Upgradation plant
- Heavy Mineral (85-90%)
 - Ilmenite 48%
 - Rutile 2.2%
 - Zircon 2.0%
 - Monazite 1.2%
 - Sillimanite 12%
 - Garnet 28%

Reject (Quartz) for refilling pits of Mined out Area

Mineral Separation Plant

Separated Products

Heavies Upgradation
- Heavy Minerals (98%)
 - Ilmenite 65%
 - Rutile 2.8%
 - Zircon 2.4%
 - Monazite 1.5%
 - Sillimanite 6.0%
 - Garnet 18%

Indian Monazite – A Potential For Future Thorium Energy
Flow Sheet for Mineral Separation

- **Conducting (Ilmenite & Rutile)**
 - Magnetic Separator (IRMS, RED)
 - Magnetic (Ilmenite)
 - Non Magnetic (Rutile)

- **Non-Conducting (Garnet, Sillimanite, Monazite & Zircon)**
 - High Intensity Magnetic Separator (HiRMS, RED)
 - Magnetic (Garnet & Monazite)
 - Non Magnetic (Zircon & Sillimanite)
 - High Tension Separator

- **Low Intensity Magnetic Separator (ED, SLRMS)**
 - Magnetic (Garnet)
 - Weak Magnetic (Monazite)

- **Gravity Separation (Flotex, Spirals & Wet tables)**
 - Heavy (Zircon)
 - Light (Sillimanite & Quartz)
 - Floatation Process (Mechanical Column)

- **Rutile Circuit (HTS, EPS, HiRMS, CB MS)**
 - Magnetic (Ilmenite)

- **Non Magnetic (Rutile)**
 - Non Magnetic (Ilmenite)

- **Magnetic Separator (IRMS, RED)**
 - Magnetic (Garnet & Monazite)

- **HUP output (Bone dried by Rotary dryer)**

Indian Monazite – A Potential For Future Thorium Energy

Composition %

<table>
<thead>
<tr>
<th>Element</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>REEs as Re2O3</td>
<td>59.37</td>
</tr>
<tr>
<td>P2O5</td>
<td>27.03</td>
</tr>
<tr>
<td>ThO2</td>
<td>8.88</td>
</tr>
<tr>
<td>CaO</td>
<td>1.24</td>
</tr>
<tr>
<td>SiO2</td>
<td>1.0</td>
</tr>
<tr>
<td>MgO</td>
<td>0.63</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.32</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.12</td>
</tr>
<tr>
<td>PbO</td>
<td>0.18</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.36</td>
</tr>
<tr>
<td>ZrO2</td>
<td>0.49</td>
</tr>
</tbody>
</table>

REEs Composition %

<table>
<thead>
<tr>
<th>Element</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanthanum</td>
<td>22</td>
</tr>
<tr>
<td>Cerium</td>
<td>46</td>
</tr>
<tr>
<td>Praseodymium</td>
<td>5.5</td>
</tr>
<tr>
<td>Neodymium</td>
<td>20</td>
</tr>
<tr>
<td>Samarium</td>
<td>2.5</td>
</tr>
<tr>
<td>Europium</td>
<td>0.015</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>1.2</td>
</tr>
<tr>
<td>Terbium</td>
<td>0.06</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>0.18</td>
</tr>
<tr>
<td>Holmium</td>
<td>0.02</td>
</tr>
<tr>
<td>Erbium</td>
<td>0.01</td>
</tr>
<tr>
<td>Yttrium</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Role of IREL for Thorium Energy

- India has long-term objective of becoming energy independent based on the vast thorium resources.

- Only country in the world with detailed, funded, government-approved plan to focus on thorium-based nuclear power.

- Monazite produced from beach sand by IREL at **Manavalakurichi in Tamil Nadu**, **Chavara in Kerala** and **OSCOM in Odisha** by physical/physico-chemical processing.

- IREL has setup plant to process **10,000 tons** of monazite annually.

- Rare Earth & Thorium compounds produced from monazite.

- IREL has framed its own strategy to meet the future demand of thorium and also fulfill the country’s thorium energy program.
Research & Development for utilisation of Thorium

R&D activities carried out at research organisations under DAE for utilisation of Thorium such as:

1) Thorium Oxide (Thoria) pellets contained in bundles in the initial cores of Pressurised Heavy Water Reactors (PHWRs)

2) Thoria based fuels irradiated to explore possibility of utilising their suitability in reactors.

3) The irradiated thoria pins of research reactors reprocessed to obtain Uranium-233.

4) The recovered Uranium-233 fabricated as fuel for the 30 KW thermal reactor.

5) Advanced Heavy Water Reactor (AHWR) of 300 MWe designed using thorium based fuel.
Future Challenges

- Operating experience with Thorium
- Expensive testing, analysis and licensing for using Thorium fuel with existing water cooled reactors.
- Thorium oxide has higher melting point than traditional fuel & inert. Increased cost of fuel fabrication and processing.
- Irradiated Thorium is highly radioactive and difficult to shield.
- Expensive Spent fuel handling and reprocessing.
- Thorium is not ideal compared to U-235 & Pu-239 as far as neutron economy is concerned.
Conclusion

- In coming decades, nuclear power would be the most important source of energy for India.

- Nuclear fission energy is a viable option for India’s energy demand.

- India building a modern industrialized economy with reduced carbon footprint.

- Reliance on wind & solar energy not realistic.

- Perfect solution to the energy requirement can only come from innovations.

- Only country in the world to focus on applied & fundamental research on thorium based nuclear power to meet the challenges.
Thank You

D SINGH
CHAIRMAN AND MANAGING DIRECTOR
INDIAN RARE EARTHS LIMITED, MUMBAI

Tel: 022 24225778
Email: cmd@irel.co.in