Neutron analysis and transmutation performance of Th-based Molten Salt Fuels

S.-I. Bak, J. S. Chai, J. P. Curbelo, S. W. Hong, E. J. In, Yacine Kaddil, Claudio Tenreiro, Y. Zhou
1Department of Energy Science, SungKyunkwan University, Suwon 440-746, Korea
2Higher Institute of Technologies and Applied Sciences, InSTEC, Havana, Cuba
3Engineering Department, European Organization for Nuclear Research, CERN, CH-1211 Geneva 23, Switzerland
4Faculty of Engineering, University of Talca, SL 720-747, Talca, Chile

Introduction
• Molten Salt Reactor (MSR)
 • MSR operates near atmospheric pressure.
 • It runs at temperature higher than water cooled reactors.
 • It is online processing.
 • Molten Salt acts as the primary coolant and as the fuel itself.
• We consider subcritical MSR with Accelerator Driven System
• Studies of Li-Be and Na based fuels have done in the past but little attention has been given to the Pb based fuel.
• Thorium fuel and thorium fuel cycles are attractive for the long-term nuclear energy production with low radioactive waste.

Main motivation to estimate
• neutron multiplication factor (K_{cm}),
• breeding or conversion ($\frac{\text{Fission}}{\text{Capture}}$) potential,
• elimination potential of Minor Actinides,
• safety characteristic (temperature coefficient)
• for Li-Be Fluoride, Na Chloride and Pb Chloride
• with or w/o Th and 233U and additionally Minor Actinides and Pu

Geometry of Accelerator Driven Molten Salt Target System

Monte Carlo Simulation
We used two calculation methods:
- Energy Amplifier Monte Carlo (EA-MC): assuming D-D fusion neutron source
- FLUKA: Correct simulation of spallation process induced by 1 GeV protons impinging directly on the molten salt fuel

Results
1. Comparison of neutron spectra in molten salts with and without Thorium
Assuming 1 GeV 1mA proton beam impinges directly on the fuel

2. K_{cm} and Breeding Ratios for Thorium-233U Uranium Fuels
Calculation of K_{cm} with different Uranium enrichment

3. Thorium + Plutonium + Minor Actinides @ $K_{eff} = 0.98$

4. Temperature Coefficients for different fuels

Conclusion
• AD-MSR is interesting: Molten Salt acts as fuel, coolant and target.
• Thermal/epithermal Li-Be fluoride molten salt is better than Na- or Pb (III) chloride for a pure Th-U fuel.
• Chloride fuels have disadvantage due to higher (n,γ) cross section from thermal to resonance energies.
• Fast neutron system is preferred for the transmutation of Minor Actinides.

Relative comparison of MSFs
- For less 233U enrichment
- For better Breeding (Conversion) Ratio
- For more Spallation neutrons
- For more Transmutation of Minor Actinides
- For safer Temperature Coefficient

Breeding (Conversion) Ratio

Neutron flux (Arb.)

233U Enrichment (%)