RADIOLOGICAL IMPACT ASSESSMENT FOR NEAR SURFACE DISPOSAL OF 232Th

Faby Sunny* and Manish Chopra

Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay, Mumbai–400085, India

*Email of corresponding author: fabys@barc.gov.in

INTRODUCTION

Thorium (232Th) itself is not fissile and so is not directly usable in a thermal neutron reactor. However, it is fertile and upon absorbing a neutron will transmute to uranium-233 (233U), which is a fissile fuel material. In this regard it is similar to 238U (which transmutes to 239Pu). The thorium fuel fabrication may lead to a low level waste comprising of 232Th. This waste may be disposed of in the Near Surface Disposal Facility (NSDF). The very low probability event of leaching of the waste may lead to contamination of the groundwater system. This paper deals with the estimation of the radiological impact of thorium waste disposal in NSDF through groundwater drinking pathway using the Multiple Area Source Model, MASOM (Sunny et al. [1]). Also, 232Th has a long decay chain which may lead to the in-situ generation of progeny. The ingrowths of progeny in the NSDF as well as during transport are incorporated using the modified Bateman equation (Eq (1). Codell et al. [2]). The transport model calculates the concentrations of all the 232Th decay chain radionuclides in groundwater. The modified Bateman equation is then used to calculate the concentrations of all the progeny. The process is complicated by the fact that the progeny will have chemical properties different from the parent radionuclide and will be adsorbed to greater or lesser extent in the solid phase. The concentration of the progeny in the liquid phase must, therefore, be corrected for its distribution coefficient (K_d). The concentration of the nth progeny can be calculated as:

$$C_n = \frac{\lambda_n}{\lambda_1} C_1 \left[\prod_{m=1}^{n-1} \lambda_m \right] \sum_{j=1}^{n} \frac{e^{-\lambda_j t}}{\prod_{k=j}^{n} (\lambda_k - \lambda_j)}$$

(1)

where C_1, λ_1 are the concentration and decay constant of parent radionuclide in the groundwater (Bq m$^{-3}$) and C_n, λ_n are the concentration and decay constant of the progeny ‘n’. The concentration of the progeny is corrected for the difference in partitioning of parent and progeny between solid and liquid phases by multiplying C_n by ratio of the retardation factors of the parent and progeny. The annual effective dose to members of the public due to consumption of groundwater can be evaluated by the equation (IAEA [3]):

$$D = C \ D_w \ DF_{ing}$$

(2)

where D is the annual effective dose through groundwater drinking pathway (Sv y$^{-1}$), C is the radionuclide concentration in the groundwater (Bq m$^{-3}$), D_w is the drinking water consumption rate (m3 y$^{-1}$) and DF_{ing} is the ingestion dose coefficient of the radionuclide (Sv Bq$^{-1}$).

RESULTS AND DISCUSSIONS

A hypothetical scenario was envisaged 1 Ci (3.7x1010 Bq) activity of 232Th dumped into a NSDF over a period of 50 years (i.e. a total of 50 Ci spread over 50 years). The NSDF is assumed to have an infiltration velocity of 1x10$^{-9}$ m s$^{-1}$. The characteristics of the aquifer are: thickness 12.5 m, groundwater velocity 0.5 m/day, porosity 0.29, longitudinal dispersivity of 1 m and transverse dispersivity of 0.1 m. The distribution coefficients of 232Th and its progeny for the waste material and the aquifer material along with other nuclear dependent parameters were taken from literature (Sheppard and Thibault [4]; IAEA [5]). Fig. 1 depicts the concentrations of 232Th and its progeny in groundwater at extremely conservative distance of 100 m from the NSDF. The concentrations are negligible up to 4000 years. After this period, the highest concentration is shown by 220Rn followed by 208Tl, 212Bi, 218Po, 212Pb, 218Ac and followed by 226Ra and 228Ra. The parent 232Th has the least concentration in groundwater. The high concentration of 220Rn is due to its zero K_d as it is soluble in water under confined conditions. The concentration of 220Rn is about 38.4 Bq L$^{-1}$ at 100 m distance after 10,000 y of disposal whereas the concentration of 232Th is about 0.0024 Bq L$^{-1}$. The radionuclide concentrations are translated into annual effective dose to the public through
groundwater drinking pathway (Fig. 2). As the half-lives of ^{220}Rn, ^{216}Po and ^{208}Tl are very short, their ingestion dose coefficients are not available at present and hence are considered to be zero.

The highest dose is due to ^{228}Ra (6.76×10^{-3} mSv y$^{-1}$), followed by ^{224}Ra (7.45×10^{-4} mSv y$^{-1}$) and then ^{232}Th (4.4×10^{-4} mSv y$^{-1}$). The total dose has a value of 8.23×10^{-3} mSv y$^{-1}$ at 100 m which occurs after 10000 y of disposal. In this scenario, it can be seen that the parent radionuclide contribute only 5.34 % to the dose and the remaining 94.66 % is contributed by the progeny; ^{228}Ra and ^{224}Ra being the main contributors with higher dose coefficient values and comparatively lower values of K_d as compared to the parent ^{232}Th.

CONCLUSIONS

In the present scenario, with disposal of 50 Ci (1.85×10^{12} Bq) activity of ^{232}Th in NSDF over a period of 50 years, the total dose to the members of the public through groundwater drinking pathway after 10000 y of disposal is 8.23×10^{-3} mSv y$^{-1}$ (8.23 µSv/y) at 100 m from the disposal facility. Also, it is concluded that the major contribution to the total dose is of the progeny rather than the parent itself. It signifies the importance of incorporation of in-situ generation of progeny in model formulation and hence the dose due to these.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. K. S. Pradeepkumar and Dr. R. B. Oza of Bhabha Atomic Research Centre, Mumbai, India for their help and support during the study.

REFERENCES